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ABSTRACT: With the launch ofGOES-16 inNovember 2016, effective utilization of its data in convective-scale numerical

weather prediction (NWP) has the potential to improve high-impact weather (HIWeather) forecasts. In this study, the

impact of satellite-derived layered precipitable water (LPW) and cloud water path (CWP) in addition to NEXRAD ob-

servations on short-term convective-scale NWP forecasts are examined using three severe weather cases that occurred in

May 2017. In each case, satellite-derived CWP and LPWproducts and radar observations are assimilated into theAdvanced

Research Weather Research and Forecasting (WRF-ARW) Model using the NSSL hybrid Warn-on-Forecast (WoF)

analysis and forecast system. The system includes two components: the GSI-EnKF system and a deterministic 3DEnVAR

system. This study examines deterministic 0–6-h forecasts launched from the hybrid 3DEnVAR analyses for the three

severe weather events. Three types of experiments are conducted and compared: (i) the control experiment (CTRL)

without assimilating any data, (ii) the radar experiment (RAD) with the assimilation of radar and surface observations, and

(iii) the satellite experiment (RADSAT) with the assimilation of all observations including surface-, radar-, and satellite-

derived CWP and LPW. The results show that assimilating additional GOES products improves short-range forecasts by

providing more accurate initial conditions, especially for moisture and temperature variables.

KEYWORDS: Radars/Radar observations; Satellite observations; Sensitivity studies; Numerical weather prediction/forecasting;

Data assimilation

1. Introduction

Many studies have demonstrated that high-resolution radar

data from the WSR-88D network (Crum et al. 1993), play a

pivotal role in convective-scale data assimilation and numeri-

cal weather prediction (NWP) since these data provide three-

dimensional internal structures of storms (Dowell et al. 2004;

Gao et al. 2004; Sun 2005; Aksoy et al. 2009; Stensrud and Gao

2010; Yussouf and Stensrud 2010; Dowell et al. 2011; Gao and

Stensrud 2012; Yussouf et al. 2013; Johnson et al. 2015;

Wheatley et al. 2015; Gao et al. 2016; Wang and Wang 2017).

However, challenges of assimilating high-density radar obser-

vations have also been exposed. Only information about wind

and some hydrometeor variables within storms can be directly

detected by radars, while information about these variables

outside storms, and other model variables (e.g., temperature

and specific humidity) are not generally detected. As a result,

large errors and biases in the initial conditions, especially for

moisture and related thermodynamic variables, remain one of

the major hurdles in properly predicting the location, timing,

and intensity of potentially dangerous severe weather events

(Stensrud and Gao 2010; Parker 2014).

With the launch of GOES-16 of the new generation of

Geostationary Operational Environmental Satellite (GOES-R

series), assimilating satellite observations, or derived products

into convective-scale NWP has become more attractive. Some

studies suggested that additional satellite observations can

partially compensate the limitation of assimilating only radar

observations (Jones et al. 2013; Fierro et al. 2016; Jones et al.

2016, 2018, 2020; Fierro et al. 2019; Zhang et al. 2019; Hu et al.

2020). One of the applications of assimilating satellite-derived

products in convective-scale NWP has been studied by Jones

et al. (2013). In their experiments, both radar observations

and satellite product cloud water path (CWP) were assimilated

into the three-dimensional compressible nonhydrostatic WRF

model with the Advanced Research WRF (ARW) dynamic

solver (WRF-ARW; Skamarock et al. 2008) for predicting a

severe weather event that occurred on 10 May 2010. Their

experiments showed that the assimilation of CWP resulted in

improvements in cloud properties and more accurate short-

wave radiation flux at the surface by comparing to the exper-

iments without CWP assimilation. Although this positive

impact decreases with increasing lead time, the benefits were

still maintained 90min into the model simulation.

Pan et al. (2018) explored the benefit of assimilating another

satellite product, total precipitable water (TPW), in addition to

CWP and radar data, in an idealized case study using a three-

dimensional ensemble-variational (3DEnVar) system (Gao

et al. 2016). In this idealized case study, the forecasts that as-

similated TPW in addition to radar data were more accurate

than those that assimilated only radar observations.Wang et al.

(2018) also found that the assimilation of the three-layer pre-

cipitable water product derived from the Advanced Himawari

Imager (AHI) in regional NWP improved heavy precipitationCorresponding author: Sijie Pan, sijie.pan@noaa.gov
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forecasts, especially when the assimilation was combined with

appropriate cumulus and microphysical schemes (Lu et al.

2019). Based on these findings, we believe that the assimilation

of satellite derived water related products has the potential to

improve convective-scale NWP by providing more accurate

model initial conditions especially for moisture and thermo-

dynamic variables.

The layered precipitable water (LPW) is one of the products

of the newly launched GOES-16 and GOES-17, and its use-

fulness to convective-scale NWP has not been studied to our

knowledge. So in this study, we evaluate the added value of

assimilating LPW and CWP products on short-term convec-

tive-scale NWP using a hybrid ensemble variational system

with several real data cases. Three HIWeather events occur-

ring in May 2017 are assessed (Table 1) by comparing analyses

and short-term forecasts from three sensitivity experiments.

The first experiment does not assimilate any observations. The

second experiment uses only radar and surface observations.

The last group of experiments uses satellite-derived CWP and

LPW products together with radar observations from WSR-

88D network and surface observations. The added value for

the assimilation of additional satellite observations can be

easily assessed by comparing the above experiments. These

three events represent different weather regimes, allowing us

to test the applicability and effectiveness of the satellite-

derived products in different weather scenarios.

The remainder of this study is organized as follows. Section 2

describes mainly the satellite LPW and CWP products and

their associated forward operators and other observations used

in the experiments. The hybrid data assimilation method and

mode configuration are briefly introduced in section 3. Both

analysis and forecast results are detailed in section 4. Section 5

presents a synthesis of the current work followed by concluding

remarks and potential future research avenues.

2. Observations used and their associated forward
operators

a. Layered precipitable water

The advanced Baseline Imager (ABI) is designed for the

GOES-R series that has been launched since 2016. Differing

from the GOES Imager carried on GOES-M series, ABI im-

plements more spectral bands as well as higher temporal and

spatial sampling capabilities (Schmit et al. 2005, 2017). A new

experimental retrieval product, LPW, is available by taking the

advantage of extra spectral bands. The retrieval algorithm was

developed for deriving legacy atmospheric temperature and

moisture profiles from radiance measurements from ABI. It

uses the general least squares regression as a first guess fol-

lowed by a one-dimensional variational approach and retrieves

atmospheric temperature and moisture profiles and the de-

rived products, including TPW and LPW from the clear sky

infrared radiances (Schmit et al. 2019). The LPW retrieval al-

gorithm mostly depends on the 6.2-, 6.9-, and 7.3-mm infrared

bands, which represent the water vapor distribution in upper,

mid-, and lower midtroposphere, respectively. It also requires

other infrared longwave bands such as 10.3-, 11.2-, 12.3-, and

13.3-mmbands for cloud-clearing purposes (Schmit et al. 2019).

The LPW product is only available over clear-sky areas.

The LPW (in cm) accumulates water vapor contained in a

vertical column over a unit cross-sectional area between two

specific levels. The forward operator used in our hybrid data

assimilation system can be written as follows:
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where rw is the water density, and qy is the water vapor mixing

ratio. The troposphere is classified into three different PW

layers: boundary layer (BL; sigma level: 1.0–0.9), middle layer

(ML; sigma level: 0.9–0.7), and high layer (HL; sigma level:

0.7–0.3). Therefore, the atmospheric pressure at a particular

sigma level needs to be determined for the LPW calculation

based on the following equation:
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wherePtop represents themodel top pressure,Psfc represents the

surface pressure, and sig_index represents the sigma level in

model. Once the low-level and high-level pressures for a par-

ticular layer have been determined by sigma level, thenEq. (1) is

applied to calculate LPWwithin this layer. In this study, only the

BL and ML of the LPW product are utilized since some sensi-

tivity experiments indicate that large forecast biases exist within

several 2017 cases when HL precipitable water is involved.

b. Cloud water path from GOES-13 imager measurements

The GOES-M series imager allows sampling of visible

and infrared radiation over the continental United States

(CONUS) every 5–15min on an on-demand basis (Menzel

and Purdom 1994; Schmit et al. 2001). The CWP is retrieved

from GOES-M imager radiances with a 4-km resolution for

cloudy pixels using the Visible Infrared Solar-Infrared Split-

Window Technique (Minnis et al. 2011). The impact of as-

similating these products in an ensemble, convection-allowing

NWP system using the ensemble square root filter (EnSRF;

Whitaker and Hamill 2002) assimilation method are described

in detail by Jones et al. (2013), Jones and Stensrud (2015), and

Jones et al. (2016). Parallax correction is performed before the

assimilation process so that the locations of clouds are adjusted

to their ground-relative coordinates (Jones et al. 2018).

The forward operator for satellite CWP retrievals is defined

by Jones and Stensrud (2015). The model equivalent CWP is

calculated by integrating total cloud water mixing ratio over the

atmospheric column from observed cloud base to cloud top:

TABLE 1. List of three high-impact weather events for assessing

the impact of assimilating GOES-13 and GOES-16 retrieval ob-

servations in convective-scale NWP. The 3–6-h forecasts are

launched at 1-h intervals from 2000 to 2300 UTC.

Event Region Period

10 May 2017 Northern TX/southern OK 2000–0200 UTC

16 May 2017 TX Panhandle/southwestern OK 2000–0100 UTC

26 May 2017 Eastern CO 2000–0100 UTC

1360 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/28/21 04:43 PM UTC



CWP52
1

g

ðCTP
CBP

�
n

x51

q
x
(p) dp . (3)

As shown in Eq. (3), CBP represents the pressure of the cloud

base, which is determined by the optical depth and cloud top

properties, CTP represents the pressure of the cloud top, p is

the atmospheric pressure, qx is hydrometeor mixing ratio for a

specific species (x), and n indicates the number of hydrometeor

species based on the microphysics scheme and observed cloud

phase. In this study, five resulting hydrometeor variables

prognosed by the Thompson 1.5-moment microphysics scheme

are adopted. The mass mixing ratios of the five hydrometeor

variables (qc, qr, qi, qs, qg) are used to create a total cloud water

mixing ratio �n

x51qx(p) at a specific model grid point. As de-

scribed in Jones and Stensrud (2015), cloud phase at each pixel

can be classified as either ‘‘liquid’’ or ‘‘ice’’ based on the cloud

temperature and cloud effective particle size information. In

the forward operator, CWP represents the column integration

of liquid cloud and rain hydrometeors for observed liquid

cloud pixel. An ‘‘ice’’ pixel represents the column integration

of both liquid and frozen hydrometeors (such as snow, ice,

graupel and hail) because the current algorithm for retrieving

CWP is unable to separately identify mixed-phase clouds such

as deep convective clouds that may contains both liquid and ice

phase hydrometeors. The CWP product is generally used to

discern cloudy and clear-sky areas in the domain. To partially

address the production of spurious clouds and convection in

the model domain, our data assimilation procedure also con-

siders the assimilation of zero CWP observations.

c. Radar and surface observation

Radial velocity and reflectivity observations are synthesized

by using level II data from the NEXRAD WSR-88Ds within

and surrounding the selected domain for each event, and then

are interpolated onto the model grids. Radar quality control

procedures (such as buddy checking, dealiasing, and anoma-

lous returns removal) are applied before they are assimilated

(Gao et al. 2013). The forward operator and its adjoint for

reflectivity are the same as those used in Gao and Stensrud

(2012), and for radial velocity are same as those used in Gao

et al. (2013). Because we omit precipitation terminal velocity

from the observed radial velocity prior to the analysis, only the

preconditioned control variables (u, y,w) for wind are required

to calculate model-derived radial velocity. Surface observa-

tions of wind, pressure, temperature and specific humidity

extracted from NCEPMeteorological Assimilation Data Ingest

System (MADIS) data are assimilated into the data assimilation

experiments at 60-min intervals. Although observations from

the Oklahoma Mesonet (Mesonet hereafter) are available for

some cases, they are not assimilated in this study to aid in the

consistency of the results among events.

3. The hybrid system and experimental design

a. The ensemble data assimilation system

TheNSSL hybrid system includes two components: theGSI-

EnSRF, and a deterministic 3DEnVAR scheme. The GSI-

EnSRF is one of the EnSRF systems that has been used for

convective-scale data assimilation in both the operational and

research communities (Johnson et al. 2015; Wang and Wang

2017; Jones et al. 2018; Yussouf and Knopfmeier 2019). The

ensemble data assimilation system assimilates conventional

observations, radar observations and satellite-derived cloud

water path, but not LPW because the forward operator for

LPW product has not been included in the system yet.

Conventional observations have varied localization length

from 60 km for the Mesonet to 460 km for the sparser resolu-

tion instruments (e.g., the Automated Surface Observing

System and the Aircraft Communications Addressing and

Reporting System). The radar observations and CWP use 18-

and 36-km horizontal radii, respectively. Localization values

applied here were derived from those used by Jones et al.

(2018). Some very encouraging results have been obtained

using this GSI-EnSRF system for convective-scale radar and

satellite data assimilation in short-term forecasts in real-time

operations (Yussouf and Knopfmeier 2019).

b. The deterministic data assimilation system

The deterministic data assimilation system is the 3DEnVAR

system used in Pan et al. (2018) and Wang et al. (2019). The

system was based on the ARPS 3DVar (Gao et al. 1999, 2002,

2004; Brewster et al. 2005; Hu et al. 2006; Gao and Stensrud

2012) data assimilation system, which was designed to spe-

cifically assimilate radar reflectivity and radial velocity. The

static background error covariance matrix is modeled by

the product of a diagonal matrix of the standard deviation of

the background error and a spatial recursive filter (Gao et al.

2004; Gao et al. 2013). The standard deviations for the model

variables are derived from the statistics of the Rapid Update

Cycle (RUC, Benjamin et al. 2004) model 3-h forecasts over

several years from 2001 to 2004. Multiple passes (or outer

loops) can be applied to the recursive filter as proposed by

Purser et al. (2003). In this study, two outer loops of the re-

cursive filter are applied. In the first outer loop, surface ob-

servations and LPW are assimilated with a 60-km horizontal

localization radius. In the second outer loop, radar radial

velocity, reflectivity and CWP are assimilated using the

18-km horizontal localization radius. Both inner loops use

40 iterations.

The system has recently been extended to incorporate flow-

dependent covariances from the ensemble (Gao and Stensrud

2014; Gao et al. 2016) and to include the required forward

operators and their adjoints for assimilating satellite derived

products (Fierro et al. 2019; Pan et al. 2018; Hu et al. 2020).

Since commonly used background error covariance B for the

traditional 3DVar method is static, it cannot appropriately

represent the flow-dependent error growth that relies on the

particular atmospheric situation. We implement an alpha

control variable method, which was first proposed by Lorenc

(2003) to incorporate flow-dependent ensemble covariance

into variational methods. As formulated, the 3DVar scheme is

renamed as 3DEnVar, in which the background error covari-

anceB is obtained by combining the static covariance and flow-

dependent covariance (Buehner 2005; Wang et al. 2007, 2008;

Gao and Stensrud 2014). Based on preliminary sensitivity ex-

periments (not shown), the weight for the flow-dependent
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ensemble and static background error covariances in this re-

search is set to 0.6 and 0.4, respectively.

c. Model configurations and experiment design

In each experiment, the ensemble system uses WRF V3.8.1

to generate a 36-member ensemble of storm-scale forecasts for

the three events. The initial and boundary conditions are ini-

tialized at 1200 UTC using the 18 6-h global ensemble forecast

system (GEFS; Zhou et al. 2017) forecasts, and then 6-h

forecasts are launched to spinup finescale structures in the

ensemble data assimilation system. The simulations in our data

assimilation experiments are performed on a 2-km spaced grid

of 480 3 360 horizontal points resulting in a 960 km 3 720 km

domain, and 51 stretched vertical levels reaching up to 50-hPa

with a 56–460-m thickness between individual levels. The

center of the domain for the relevant event is selected based on

the storm reports provided by the Storm Prediction Center

(SPC) so that the principal HIWeather, especially tornadoes,

large hail and high winds are located within the domain. Initial

and boundary conditions are provided by the first 18 members

of the 21-member GEFS. In addition to the initial and

boundary conditions, variations in boundary layer physics and

radiation schemes are applied to create a different set of model

physics for each ensemble member to avoid underdispersion

between members (Stensrud et al. 2000; Fujita et al. 2007;

Wheatley et al. 2014).

The combinations of PBL and radiation schemes for the

ensemble members are shown in Table 2, similar to those de-

scribed in Wheatley et al. (2015) and Skinner et al. (2018). The

same combinations of the parameterization schemes are ap-

plied to the reverse order of downscaled GEFS members to

create the remaining 18 ensemble members so that member 19

TABLE 2. PBL and radiation scheme combinations for 36 ensemble members of each 2017 event. Deterministic member indicates the

extra member used for deterministic analysis and forecast. The PBL schemes include MYJ (Janjić 1994), YSU (Hong et al. 2006), and

MYNN2 (Nakanish 2001; Nakanishi and Niino 2004). The radiation schemes includeDudhia (Dudhia 1989), RRTM (Mlawer et al. 1997),

RRTMG (Iacono et al. 2008), and Goddard (Chou and Suarez 1999; Chou et al. 2001).

Member GEFS member PBL Shortwave radiation Longwave radiation

Deterministic GFS MYJ RRTMG RRTMG

1 1 YSU Dudhia RRTM

2 2 YSU Goddard Goddard

3 3 MYJ RRTMG RRTMG

4 4 MYJ Dudhia RRTM

5 5 MYNN2 Goddard Goddard

6 6 MYNN2 RRTMG RRTMG

7 7 YSU Dudhia RRTM

8 8 YSU Goddard Goddard

9 9 MYJ RRTMG RRTMG

10 10 MYJ Dudhia RRTM

11 11 MYNN2 Goddard Goddard

12 12 MYNN2 RRTMG RRTMG

13 13 YSU Dudhia RRTM

14 14 YSU Goddard Goddard

15 15 MYJ RRTMG RRTMG

16 16 MYJ Dudhia RRTM

17 17 MYNN2 Goddard Goddard

18 18 MYNN2 RRTMG RRTMG

19 1 MYNN2 RRTMG RRTMG

20 2 MYNN2 Goddard Goddard

21 3 MYJ Dudhia RRTM

22 4 MYJ RRTMG RRTMG

23 5 YSU Goddard Goddard

24 6 YSU Dudhia RRTM

25 7 MYNN2 RRTMG RRTMG

26 8 MYNN2 Goddard Goddard

27 9 MYJ Dudhia RRTM

28 10 MYJ RRTMG RRTMG

29 11 YSU Goddard Goddard

30 12 YSU Dudhia RRTM

31 13 MYNN2 RRTMG RRTMG

32 14 MYNN2 Goddard Goddard

33 15 MYJ Dudhia RRTM

34 16 MYJ RRTMG RRTMG

35 17 YSU Goddard Goddard

36 18 YSU Dudhia RRTM
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is obtained by downscaling GEFS member 18 but using the

parameterization combination for member 1. All ensemble

members adopt the Thompson cloud microphysics scheme

(Thompson et al. 2004, 2008). Because the simulations are

performed on a 2-km convection-allowing grid, no cumulus

parameterization scheme is used. Although the multiplicative

covariance inflation method is not applied to the system (Jones

et al. 2018), the additive noise technique described in Dowell

and Wicker (2009) is applied to maintain the spread between

ensemble members. Local perturbations are added to tem-

perature (0.5K), dewpoint temperature (0.5K), and wind

(0.5m s21) for the grid points where .25-dBZ reflectivity is

observed and the absolute innovation of the posterior ensem-

ble mean reflectivity is less than 10 dBZ. Zero reflectivities are

assimilated in the GSI-EnSRF scheme to suppress spurious

precipitation.

As described in Fig. 1, the deterministic component and

ensemble component are one-way coupled using a consistent

spatial resolution for this preliminary investigation. It is used to

evaluate the skill of the analyses and forecasts. Initial and

boundary conditions for the deterministic component are ob-

tained by launching a 6-h WRF forecast from a downscaled

GFS analysis valid at 1200UTC. The domain covers exactly the

same area as that in the ensemble component. For consistency

with the High Resolution Rapid Refresh configuration (HRRR,

Smith et al. 2008), the deterministic component chooses the

RRTMG scheme for the shortwave and longwave radiation

and the MYJ scheme as the PBL scheme during the assimila-

tion cycling, as well as the free forecast period.

Figure 2 illustrates the analysis and forecast cycling set up

used in this study. Observations are continuously assimilated

from 1800 to 2300 UTC at 15-min intervals for all three events.

The analysis variables for driving the WRF Model include

wind fields (u, y,w), temperature (T), water vapor mixing ratio

(QVAPOR), geopotential height (PH), dry-air mass (MU),

and hydrometeor mass (cloud water, rain, ice, snow, graupel),

which are updated at each cycle in both the EnKF ensemble

and hybrid EnVar deterministic systems. The 3–6-h forecasts

are launched every hour beginning at 2000 UTC to provide

performance of each experiment during the period of relevant

FIG. 1. Schematic diagram of a single hybrid 3DEnVar data assimilation cycle [modified

based on Fig. 1a of Wang et al. (2013)].

FIG. 2. Flowchart representing assimilation cycles for experiments used by all three high-impact

weather events listed in Table 1. Times used in this figure are in UTC.
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severe weather events. All free forecasts are ended at

0200 UTC on the next day.

Three types of experiments are performed for each event.

The control experiment (CTRL) runs without assimilation of

any observations so that it can provide a baseline for com-

parison between experiments. The second experiment, labeled

radar experiment (RAD), assimilates radial velocity, reflec-

tivity, and surface observations. By comparing the above two

experiments, the impact of radar and surface observations in

convection-allowing NWP can be highlighted. Considering

that CWP and LPW observations generally cover different

areas (i.e., cloudy area and clear-sky area) and can compensate

one another’s shortage in coverage (as shown in Fig. 3), the

third experiment assimilates both LPW from GOES-16 and

CWP from GOES-13 in addition to surface and radar obser-

vations instead of separately combining CWP or LPW with

the radar data, labeled as the radar 1 satellite experiment

(RADSAT). Two additional experiments, one similar to the

third experiment but without assimilating LPW (named as

RADCWP), and another without assimilating CWP (named as

RADLPW) will also be discussed occasionally for the com-

parison purpose if necessary. Observation errors and recursive

filter radius for each type of observation used in the variational

system are listed in Table 3. Analyses and forecasts are com-

pared between three types of experiments for each event to

investigate whether or not assimilating CWP and/or LPW

products has positive impact on analyses and subsequent

forecasts.

4. Analysis and forecast results

Since 10, 16, and 26 May 2017 each represent three different

synoptic system types, analyses at some particular time when

severe weather events were active on these days and their af-

filiated 3–6-h forecasts are selected for the study. Only the

results of the deterministic component of the three experi-

ments are discussed. The subjective diagnostic analyses are

provided for each case followed by the qualitative forecast

evaluation including comparing the updraft helicity (UH)

tracks against SPC storm reports over free forecast periods. To

provide a quantitative measure of forecast skill, the frequency

bias (BIAS) and fractions skill score (FSS; Roberts and Lean

2008) for composite reflectivity are computed relative to ob-

servational data from the Multi-Radar Multi-Sensor system

FIG. 3. Locations of the observations assimilated into the hybrid

En3DVar system at 1800 UTC for (a) 10, (b) 16, and (c) 26 May

2017 events. Black squares represent surface observations. Green

circles represent the coverage of radars. Blue dots and red crosses

are the CWP observations in cloudy areas and LPW observations,

respectively.

TABLE 3. Observation errors and recursive filter radius used in

the variational component of the hybrid 3DEnVar system. The

vertical radius of the recursive filter is given in grid points.

Observation type Error

Horizontal

radius (km)

Vertical radius

(grid points)

Surface U wind 1.5m s21 60 4

Surface V wind 1.5m s21

Surface pressure 2.0 hPa

Surface temperature 1.5K

Surface specific

humidity

0.5 g kg21

Low-level LPW 0.15 cm

Midlevel LPW 0.15 cm

Radial velocity 2.0m s21 18

Reflectivity 10.0 dBZ

CWP 0.4 kgm22
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FIG. 4. Analyses of (a)–(e) surface temperature at 2m above the ground and (f)–(j)

downward shortwave flux at surface for CTRL, RAD, RADSAT, RADCWP, and

RADLPW experiments at 2000 UTC 10 May 2017.
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(MRMS; Smith et al. 2016). Additionally, neighborhood eq-

uitable threat scores (ETS; Clark et al. 2010) aggregated over

all cases are also calculated relative toNCEP’s Stage-IV hourly

precipitation product (Baldwin and Mitchell 1997). Finally,

information about the statistical metrics and moments of the

hybrid En3DVar are given.

a. Analysis diagnostics

1) 10 MAY 2017 CASE

On 10 May 2017, the prestorm environment over Oklahoma

and Texas was becoming unstable starting from about 1700 UTC.

Near the Oklahoma–Texas border, multiple severe-warned

storms, including supercells, developed and affected the area

throughout the day (See markers in Fig. 13). Figure 4 shows

the surface temperature at 2000 UTC 10 May 2017, after 2 h

of data assimilation cycling for each experiment. The temper-

ature gradient along the Oklahoma–Texas border is not sharp

or well defined for all experiments (Figs. 4a–e). A slight de-

crease in temperature (;58F) is found near the border of the

Oklahoma and Kansas in RAD, which is introduced due to the

development of storm cells in model (black box, Fig. 4b).

In contrast, with the assimilation of satellite-derived observa-

tions (Fig. 4c vs Figs. 4a,b), RADSAT generates a large area

of cooled surface temperature (;658F) extending from the

eastern part of the Texas Panhandle through northwestern

Oklahoma to southern Kansas (ellipse area in Fig. 4c). This

pattern agrees with the mesonet observations (ellipse area

;658F in Fig. 5a; McPherson et al. 2007), which provides a

source of independent verification for the analysis. The dif-

ferences are the consequence of assimilating CWP and LPW

observations, which modified the cloud properties in either

direct or indirect way. This interpretation is also supported

by the standalone RADCWP and RADLPW experiments

(Figs. 4d,e).

The downward shortwave flux (SWDOWN inWRF, Figs. 4f–j)

represents the amount of downward shortwave radiation

reaching the Earth’s surface. Higher values of shortwave flux

are associated with clear-sky regions and high surface tem-

peratures, while lower values of shortwave flux are associated

with the existence of clouds and cooler temperatures. In RAD,

the presence of isolated and thick clouds associated with the

southern Kansas MCSs is evidenced by low downward short-

wave flux values at the same location where the surface tem-

perature is reduced (the green shade in the black box of Fig. 4b,

and the blue shade in the black box of Fig. 4g). In the

RADSAT experiment, most of Oklahoma and northeastern

Texas is associated with low surface temperature and SWDOWN

(Figs. 4c,h). This implies extensive cloud cover being present,

which is evident on the standalone RADCWP/RADLPW

experiments (Figs. 4i,j), and the corresponding GOES-16 vis-

ible image (Fig. 5b). The satellite observations and shortwave

flux calculated from the model variables corroborate each

other and clearly depict the relationship between the cloud

characteristics, downward shortwave radiation and surface

temperature. Clouds prevent incoming shortwave solar energy

from passing through the atmosphere by reflecting and ab-

sorbing shortwave radiation during the daytime, and hence

resist surface heating and lead to a cooler surface. These

changes in temperature may further stabilize the lower tro-

posphere and restrain the development of spurious convec-

tions in later forecast times.

Water vapor distribution is another critical factor that may

affect convective initiation and development. Since the Eq. (1)

indicates a linear correlation between the water vapor mixing

ratio and simulated model equivalent LPW, the impact of as-

similating LPW on water vapor content can be straightfor-

wardly assessed. Differences in water vapor are not obvious

between RAD and CTRL at 2000 UTC in most areas (Fig. 6a).

The largest difference,.2 g kg21, appears near Motley, Texas.

The difference is likely due to the ongoing convection. For

RADSAT, the difference of water vapor mixing ratio against

CTRL reaches as high as 3.0 g kg21 south to the border

between Oklahoma and the Texas Panhandle (black box,

Fig. 6b). A large area with .1.5 g kg21 difference is observed

over western Texas (southwest of the model domain) in

RADSAT as well. This difference is obviously introduced by

assimilating LPW product when we compare RAD against the

standalone RADCWP/RADLPW experiments (Fig. 6a vs

Figs. 6d,e). The water vapor content in RADSAT increases

more than 30% compared to that of RAD [Fig. 6c, RAD has

3–10 g kg21 water vapor content over southern Texas Panhandle

FIG. 5. (a) Mesonet 1.5-m surface temperature and (b) visible

image from GOES-16 at 2000 UTC 10 May 2017.
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(not shown)], which may lead to a more favorable moisture

content for initiating deep moist convection when accompa-

nied with a strong lifting process. In addition, an area with

positive differences in water vapor is observed over southwestern

Oklahoma when comparing RADSAT and CTRL/RAD (blue

boxes in Figs. 6b,c). In summary, a more reasonable water vapor

mixing ratio field is able to either benefit the suppression of

spurious convection or to promote new cell developments for

this case.

Comprehensive changes of model’s thermodynamic condi-

tions can be evaluated by the mixed layer convective inhibition

(MLCIN) and mixed layer convective available potential en-

ergy (MLCAPE) (Fig. 7). Essentially, high MLCIN occurs in

areas of cool surface temperatures caused by clouds and pre-

cipitation. Both CTRL and RAD produce a high MLCIN over

southeastern Oklahoma and eastern Texas. Differences in

MLCIN betweenCTRL andRAD (Figs. 7a,b) are evident over

southern Kansas. RADSAT also generates high MLCINs over

southeastern Oklahoma and eastern Texas. But apparently, it

also generates highMLCINs in southern Kansas, northwestern

Oklahoma and eastern Texas Panhandle (Fig. 7c), and low

MLCAPEs near the same areas (Fig. 7f). The cloud cover with

CWP . 1.5 kgm22 (ellipse area in Fig. 5b and corresponding

area in Fig. 4h) allows stabilization of the low-level atmosphere

and MLCIN ,2200 J kg21 for the same reason. Compared to

the CTRL experiment, RAD does not significantly change the

MLCAPE at 2000 UTC (Figs. 7d,e). In contrast, theMLCAPE

over the clear-sky area in southwestern Oklahoma increases to

around 2750 J kg21 in RADSAT. This increase corresponds

well with the difference of water vapor mixing ratio at surface

(Figs. 6b,c). Consequently, a supercell that produced several

tornadoes developed at a later time.

2) 16 MAY 2017 CASE

The 16 May 2017 event was characterized by the pres-

ence of a dryline that extended southward from western

Kansas down to the U.S.–Mexico border at 1800 UTC.

Storms formed at the intersection of the dryline and weak

frontal boundary zonally crossing central Kansas (https://

www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive_

maps.php?arcdate505/16/2017&selmap52017051621&maptype5
namussfc). From 1800 to 2100 UTC, the dryline remained sta-

tionary and convection initiated at several locations ahead of

the dryline. Similar to the 10 May 2017 event, the differences

between three experiments for surface water vapor mixing

ratio are analyzed (2100 UTC). A narrow band of negative

differences exceeding 3 g kg21 is observed in the middle of

the Texas Panhandle in the of moisture difference field be-

tween RAD and CTRL (Fig. 8a). The difference between

RADSAT and CTRL is quite similar to that between RAD

and CTRL, but positive differences. 3 g kg21 are also present

over the southern Texas Panhandle (black box, Fig. 8b).

Farther south, the difference becomes negative between

RADSAT and CTRL, and between RADSAT and RAD

(Figs. 8b,c). Moreover, RADSAT generates a positive differ-

ence in surface moisture ahead of the dryline along the border

of the eastern Texas Panhandle and western Oklahoma. These

changes promote a bulge of dry air toward the moist air to

the east, intensifying the moisture gradient over this area in

RADSAT.

FIG. 6. The differences of analyzed surface water vapor mixing ratio (a) between RAD and CTRL, (b) between RADSAT and CTRL,

(c) between RADSAT and RAD, (d) between RADCWP and CTRL, and (e) between RADLPW and CTRL at 2000 UTC 10May 2017.

The black box highlights one of differences of water vapormixing ratio betweenRADSAT/RADLPWandCTRL.The blue box highlights

one of differences of water vapor mixing ratio between RADSAT and CTRL/RAD.
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3) 26 MAY 2017 CASE

The third analyzed event occurred on 26 May 2017 in

Colorado. Based on the sounding (KDNR, not shown) at

0000 UTC 27 May 2017, this event is characterized by low

an inertial instability and high vertical wind shear environ-

ment. Figure 9 exhibits differences of surface water vapor

mixing ratio in the analyses between experiments. RAD

produces more water vapor (.1 g kg21) over southeast

Wyoming and in northeastern Colorado, which is near the

tornadic supercell (black box, Fig. 9a). RADSAT appears

to reduce water vapor (,21 g kg21) over the area southeast

to the tornadic supercell, but slightly increases the water

vapor (.0.5 g kg21) in northeastern Colorado and north-

western Kansas (Figs. 9b,c). More apparent differences are

observed in the intensity of vertical wind shear, which is one

of the most important factors that may affect the accuracy

of predicting convection (Weisman and Klemp 1982). All

experiments generate 0–1-km vertical wind shear greater

than 20m s21, which is associated with the soon-to-be-

tornadic convection in northeastern Colorado (Figs. 9d–f).

Both RAD and RADSAT intensify the vertical wind shear

in northeastern Colorado (red boxes) while RADSAT also

changes the pattern of vertical wind shear in southeastern

Wyoming (Blue boxes) compared to CTRL and RAD

experiments.

4) GENERAL DISCUSSIONS OF REFLECTIVITY FOR ALL

THREE CASES

Some differences in the analyzed composite reflectivity are

shown among the experiments depending on what kind of

observations are assimilated. For the 10 May 2017 event

(Fig. 10), CTRL misses the supercell located in the southern

Texas Panhandle at 2000 UTC, but also produces spurious

cells farther south when compared with MRMS data (Fig. 10a

vs Fig. 10b). RAD analyzes the major supercell (Storm 1)

but misses the storm cells in southeastern Oklahoma (Fig. 10a

vs Fig. 10c). Only RADSAT correctly places all storms near

or at their observed locations, especially for the major super-

cell over the Texas Panhandle, which produces several torna-

does at later times in the forecast near the Red River in

addition to producing more storm cells near the border of

Oklahoma and Kansas (Fig. 10a vs Fig. 10d) though small

spurious cells exist.

For the 16 May 2017 event (Fig. 11), CTRL produces both

storm 1 and storm 2 over the Texas Panhandle at 2100 UTC,

which match the MRMS data (Fig. 11a vs Fig. 11b). But the

storm cluster over southwestern Kansas has significant phase

errors. The pattern of the cluster prefers a southwest–northeast

orientation as shown in MRMS data rather than a south–north

orientation in CTRL. The pattern is somewhat corrected in

RAD, but more areas over southwestern Kansas are covered

FIG. 7. (a)–(c) The lowest 75-hPa mixed-layer convective inhibition (MLCIN) and (d)–(f) the lowest 75-hPa mixed-layer convective

available potential energy (MLCAPE) for CTRL, RAD, and RADSAT experiments at 2000 UTC 10 May 2017.
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by simulated composite reflectivity. 40 dBZ compared to the

MRMS data (Fig. 11a vs Fig. 11c). In RADSAT, the intensity

(in dBZ) of the cluster seems match the observations well,

but also produces spurious cells around this area (Fig. 11a vs

Fig. 11d).

For the 26 May 2017 event (Fig. 12), both CTRL and

RAD produce a strong supercell at southeastern Colorado at

2100 UTC, which is not seen in the MRMS data (Fig. 12a vs

Figs. 12b,c), while RADSAT only generates a much weaker

small-scale spurious cell at the same location (Fig. 12d).

Moreover, less spurious cells with . 40 dBZ composite re-

flectivity are observed over southeastern Wyoming and south-

eastern Colorado in the RADSAT experiment.

b. Qualitative forecast evaluation

For the first 2-h forecasts of the 10 May event, all experi-

ments generate the supercell in the Texas Panhandle near the

southwest corner of the Oklahoma, but many spurious cells

exist in both CTRL and RAD in the north Texas Panhandle

and Oklahoma Panhandle indicating large overprediction of

convection (Figs. 10f,g,j,k). RADSAT has the best prediction

of the storms in general (Figs. 10h,l) likely because the as-

similation of satellite-derived data weakens the spurious con-

vection in these areas. In the next 3-h forecasts, this issue has

been slightly alleviated but still exists in both CTRL and

RAD. Moreover, large phase errors for the storm cluster

around the south west corner of Oklahoma are observed in

both CTRL and RAD (Figs. 10n,o,r,s,v,w). The storms in

CTRL and RAD exhibit north biases compared to the MRMS

data. The relative locations of the storms in CTRL prefer a

south–north orientation instead of a southwest–northeast ori-

entation as shown in the MRMS data. RADSAT performs

better, especially for the orientation and location of the storms

that produced tornadoes along the Red River (Figs. 10p,t,x).

The improvements observed in RADSAT are probably the

consequence of combining changes in water vapor distribution

over southwestern Oklahoma and its associated impact on

MLCAPE and MLCIN, which are primarily due to the as-

similation of LPW observations.

For the 16 May event, the result of 3-h forecast launched

from 2100 UTC corresponds well to the analyses previously

discussed. Two separate tornadic supercells are predicted by

all three experiments between 2100 and 0000 UTC (Figs. 11a–

p). However, two important improvements are present in

RADSAT. The 1- and 2-h forecasts for composite reflectivity

show that all experiments maintain an MCS in western

Kansas, while RADSAT generates anMCS pattern (Fig. 11h)

slightly closer to the observations at 2200 UTC (Fig. 11e)

though many small spurious cells exist. TheMCS appears as a

southwest–northeast linear shape at 2300 UTC in RADSAT

(Fig. 11l), which is similar to observed composite reflectivity

(Fig. 11i) compared to CTRL and RAD. Another improve-

ment is related to the predictability of storm 3 (Fig. 11i). Only

RADSAT produces a better forecast by generating this

nontornadic supercell associated with large hail damage

while both CTRL and RAD fail to generate an isolated su-

percell in this region.

An improved forecast of severe convection on 26May is also

observed by comparing the simulated composite reflectivity

within 3-h forecasts launched from 2100UTC (Figs. 12a–p). All

three experiments appropriately predict the tornadic supercell

in northeastern Colorado during the 3-h forecast period.

CTRL differ from RAD and RADSAT in that it produces the

FIG. 8. As in Fig. 6, but at 2100 UTC 16 May 2017. The black

box indicates the positive difference between RADSAT and

CTRL/RAD.
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tornadic supercell falling behind the location observed in the

MRMS data. For example, RAD and RADSAT (Figs. 12k,l)

produce the tornadic supercell atWashington county, Colorado,

as in the MRMS observation (Fig. 12i), while CTRL produce

the tornadic supercell at Arapahoe county, Colorado. At

2200 UTC, 1 h into the forecast, although RADSAT over-

predicts the storm initiated in the southeast corner ofWyoming

(Fig. 12e vs Fig. 12h), and the other two experiments totally

miss this storm (Figs. 12f,g). At 2300 and 0000 UTC, RADSAT

maintains the storm similar to that in the MRMS observations.

However, it produces more spurious cells near the border of

Colorado and Kansas (Figs. 12l,p) compared to the CTRL

(Figs. 12j,n) and RAD (Figs. 12k,o).

To illustrate themotion of convection associated with severe

weather events, the 2–5-km UH tracks for 6-h forecasts

launched from 2000 UTC 10 May (Fig. 13), 2100 UTC 16 May

(Fig. 14), and 2100 UTC 26 May (Fig. 15) are overlaid with the

NWS local storm reports recorded by the Storm Prediction

Center (SPC) during these time periods. The larger updraft

helicity represents the stronger vertical motion and midlevel

rotation between 2 and 5 km at a given horizontal grid point.

On 10 May 2017, each experiment generates an UH track

along or north of the reported severe storm events near the

border of southwestern Oklahoma and north Texas. A hys-

teresis of strong UH associated with the storm 1 (indicated in

Fig. 10e) is predicted although it is imbedded in spurious

convections in CTRL (Fig. 13a). RADSAT best matches the

track and intensity of UH to the NWS reports not only for the

first storm, but also for the second storm observed around

2300 UTC in Foard County, Texas (Fig. 10m). By comparing

RADSAT and the standalone RADCWP/RADLPW ex-

periments (Fig. 13c vs Figs. 13d,e), it is apparent that the

improvement in initial conditions, and hence convection

initiation and the movement of convection is due to the

assimilation of LPW product.

For the 16 May event, all experiments produce similar 2–5-

km UH tracks and intensities (.450m2 s22) for the tornadic

supercells. RADSAT generates a UH track almost exactly

matching the NWS reports for both tornadic supercells and

nontornadic supercell (Figs. 14c, 11i), whereas CTRL and

RAD totally miss the third storm (Figs. 14a,b). RADSAT also

provides a somewhat better UH track forecast for the haz-

ardous weather events including tornadoes in southwestern

Kansas between 2100 and 0000 UTC.

As expected, all experiments for 26 May generate a UH

track with value greater than 450m2 s22 for the tornadic su-

percell. However, CTRL has a south bias compared to the SPC

reports (Fig. 15a). Both RAD and RADSAT generate tracks

better overlapping the SPC reports. Although RADSAT has

lower UH values along the track, it highlights the southeastern

turn that occurred with the storm just after the first tornado

formed (Fig. 15c). Apparently, the storm in RADSAT is

moving along the path where larger moisture gradient is ob-

served (Figs. 9b,c). Therefore, the differences of forecasts

FIG. 9. (a)–(c) The differences of analyzed water vapor mixing at the surface between experiments, as well as (d)–(f) 0–1-km wind shear

for (d) CTRL, RAD, and RADSAT, respectively, at 2100 UTC 26 May 2017.
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FIG. 10. (from left to right) The composite reflectivity from MRMS and the forecasted composite reflectivity for CTRL, RAD, and

RADSAT. (a)–(d) The analysis at 2000 UTC 10 May 2017. The (e)–(h) 1-, (i)–(l) 2-, (m)–(p) 3-, (q)–(t) 4-, and (u)–(x) 5-h forecasts

initiated at 2000 UTC. Boxes in (f) and (g) indicate the locations of overprediction without using satellite observations during the as-

similation cycles.
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between the RADSAT and other experiments are very likely

related to the changes in water vapor distribution related to the

assimilation of LPW.

c. Quantitative forecast evaluation

Although the subjective comparisons of composite reflec-

tivity and UH track between the experiments suggest that as-

similating additional satellite observations improves the skill of

convection forecasts, the quantitative verification is essential to

objectively assess the impact of assimilating different obser-

vations on the short-term forecasts. First, the simulated com-

posite reflectivity and hourly accumulated precipitation are

interpolated from model space to observation space by ap-

plying bilinear interpolation in horizontal and linear inter-

polation in vertical. Then, the BIAS and FSS of composite

reflectivity and ETS of hourly accumulated precipitation are

calculated relative to theMRMS composite reflectivity and the

NCEP Stage-IV product (Lin and Mitchell 2005), respectively.

Composite reflectivity uses 20 and 40 dBZ as thresholds to

assess the performance of each experiment, while hourly

accumulated precipitation uses 2- and 10-mm thresholds. The

neighborhood radius of 12 km is chosen for all these score

calculations. The results are aggregated over 3-h forecasts

initiated every 1 h between 2000 and 2300 UTC for all three

cases (see Fig. 2). For the FSS and ETS, a value of 1.0 indicates a

perfect forecast and the value of zero indicates no forecast skill.

A bias of 1.0 indicates no bias, whereas values over 1.0 indicate

overprediction and values below 1.0 indicate underprediction.

Using 20 dBZ as a threshold for reflectivity, the biases

are generally small (close to 1.0) during most of 3-h forecast

period for all three experiments (Fig. 16a). However, posi-

tive biases exist during the early stage of the forecasts for

both RAD and RADSAT experiments. This is due to the ini-

tiation of spurious cells at early forecast time and they disap-

pear along with the forecast time moving forward. For the

40-dBZ threshold, the results are different (Fig. 16b). All ex-

periments have bias scores greater than 1.0, indicating general

overpredictions throughout the entire forecast period. The

RADSAT maintains;0.2 lower BIAS scores compared to the

RAD and CTRL.

FIG. 11. As in Fig. 10, but for 3-h forecasts initiated at 2100 UTC 16 May 2017.
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The FSS of RADSAT is always better than the other two

experiments for both thresholds (Figs. 16c,d) during the

forecast period. Unlike the CTRL experiment, which pro-

duces almost constant lowest performance in term of the

FSS, RAD, and RADSAT initially have higher scores (be-

tween ;0.4 and ;0.7) and decrease gradually as a function

of forecast lead time. At the end of the 3-h forecast period,

the FSS of RADSAT is approximately 0.1 higher than that

of CTRL and 0.05 higher than that of RAD for both

thresholds. Overall, RADSAT outperforms other two ex-

periments, and RAD outperforms CTRL against MRMS

composite reflectivity.

The 1-h accumulated precipitation performance relative to

the Stage-IV hourly precipitation product tells a similar story.

For the 2-mm threshold, RADSAT outperforms 1-h accumu-

lated precipitation by 0.05 and 0.1 compared to RAD and

CTRL, respectively (Fig. 16e). It is worth noting that the per-

formance of the first hour precipitation forecast in RADSAT is

slightly degraded and about 0.14 lower than the RAD

experiment. This overall improvement is further supported

with the verification using a 10mm threshold (Fig. 16f). In

general, the skill of 1-h accumulated precipitation forecasts for

all experiments decreases with time except CTRL experiment

with 10-mm threshold.

d. Hybrid En3DVar statistical metrics analysis

To assess the quality of the hybrid En3DVar analysis cy-

cling, some features of statistic metrics including the behavior

of the normalized total functions, mean (bias), and root-mean-

square (rms) for innovation and analysis residual during the

cycling period are discussed. These metrics were defined in

detail by Fierro et al. (2019). During the minimization process

of the hybrid En3DVar, the values of the cost function for each

observation type generally decrease as a function of iteration

number. It is also convenient to measure the distance between

the observations and the background fields or the analysis by

analyzing the rms innovation and the rms residual by applying

the following equations (Fierro et al. 2019):

FIG. 12. As in Fig. 10, but for 3-h forecasts initiated at 2100 UTC 26 May 2017.
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where N is the number of observations, y is the observation,

and H(x) is forward operators transferring the background

fields (xb) or the analysis field (xa) from model space to ob-

servation space. Moreover, the mean innovation and mean

analysis residual are analyzed to determine if any biases are

generated for control variables by the data assimilation

process:
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Because the results of all three cases are qualitatively similar,

only the first event (10 May 2017) is discussed.

In general, both RAD and RADSAT experiments show a

decrease in the total cost function with the RAD experiment at

various analysis times producing a reduction ranging between

50% and 80% at the end of the minimization process. The

largest decrease (over 75%) is observed at initial analysis time

1800 UTC (Fig. 17a). Given more observations being assimi-

lated, RADSAT generally has 10% less reduction compared to

RAD at the same analysis time (Fig. 17b). RAD produces

greater reduction (around 40%) of the total cost function at the

first three iterations at 1800 and 1900 UTC, while the RAD

experiment for the remaining analysis times and the RADSAT

experiment for all analysis times have stable reduction rates

between iterations.

The innovation biases for LPW are positive and largely de-

part from the reference line (exceeding 1mm) for the first

30min of the data assimilation cycling (Fig. 17d), indicating

that the background fields initially have dry biases compared to

the observations over most part of the domain; especially

over western Texas and southwestern Kansas (Fig. 6). Since

the dry biases are ameliorated within 3 analysis timestamps

by assimilating LPW observations, the innovation and analysis

residual biases for LPW fluctuate around the reference line

starting from 1830 UTC. The innovations for radial veloc-

ity have negative biases between 1800 and 2000 UTC, but

both innovation and residual for radial velocity turn to be

identical and close to zero since 2000 UTC for both RAD and

RADSAT experiment (Figs. 17c,d). This indicates that the

analyzed radial velocity fields fit the observations very well.

For reflectivity, the innovations are positive with largest bias

;13 dBZ at 1800 UTC and decreasing at later data assimila-

tion cycles. They finally alter to be negative since 2100 UTC

and reach lowest value (;25 to 26 dBZ) near 2145 UTC.

In contrast, the residuals for reflectivity are close to the ref-

erence line only between 1800 and 1900 UTC for RAD and

between 1800 and 2000 UTC for RADSAT. Over the whole

data assimilation cycling period, they are consistently nega-

tively biased. This statistical feature suggests that the non-

linearity of reflectivity forward operators may prevent the

data assimilation system from readily absorbing all the in-

formation from reflectivity observations. The rms statistics

FIG. 13. The tracks of UH between 2 and 5 km above ground (shaded) drawn from 6-h forecasts initiated at 2000 UTC 10 May 2017

for the (a) CTRL, (b) RAD, (c) RADSAT, (d) RADCWP, and (e) RADLPW experiments. The red, blue, and green markers indicate

reports of tornadoes, damaging wind, and large hail, respectively.
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(Figs. 17e,f) show that the values for analysis residual are

typically smaller than the innovation values. The analysis is

able to reasonably fit all kinds of observations during the

whole cycling period. Moreover, the residual values for all

types of observations are close to their corresponding ob-

servation errors, respectively, indicating these observations

are properly assimilated.

5. Conclusions and future work

In this research, three experiments are conducted to inves-

tigate the impact of assimilating radar, surface, and satellite

retrieved CWP and LPW observations on short-term convec-

tive-scale NWP with three HIWeather events that occurred in

May 2017. The CTRL experiment does not assimilate any

observations. The RAD experiment assimilates radar and

FIG. 14. As in Fig. 13, but for 3-h forecast initiated at 2100 UTC

16 May 2017.

FIG. 15. As in Fig. 13, but for 4-h forecast initiated at 2100 UTC

26 May 2017.
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surface observations, and the RADSAT experiment further

assimilates satellite derived CWP and LPW products in

addition to the radar and surface data. Generally, the

comparison of results from three types of experiments in-

dicates the improvement on model initial conditions and

short-range forecasts for three severe weather events when

CWP and/or LPW are also assimilated in addition to radar

and surface data.

For the 10 May 2017 event, assimilating CWP improves the

cloud property analysis, the downward shortwave radiation

over the cloudy areas, and therefore surface temperature and

atmospheric instability. Spurious cells are mostly removed

in later forecasts due to this improvement. Assimilating the

LPW product also yields positive results for CI by saturating

the moisture fields surrounding the ongoing convection. The

improved analysis typically generates high UH swaths that are

more appropriately placed when compared against the SPC

damage reports.

Similar impacts of assimilating satellite products are

observed for the other two cases. For the 16 May 2017,

RADSAT leads to intensified moisture gradient at the

surface compared to CTRL and RAD. As a result, the

storms of interest are better analyzed and predicted when

verified against the observations. For the 26 May 2017,

RADSAT improves water vapor distribution at the surface

and low-level vertical wind shear, leading to better placed

storms in the model at times and locations consistent with

the observations. Again, the reflectivity and UH track

FIG. 16. (a),(b) Frequency bias and (c),(d) fractions skill score (FSS) of composite reflectivity forecasts against

the MRMS observations over the simulation domain. The thresholds used for verification are 20 and 40 dBZ. The

results aggregate 3-h forecasts starting from 2000, 2100, 2200, and 2300UTCof all three events. (e)–(f) Bars indicate

ETS of hourly accumulated precipitation against the NCEP Stage-IV product aggregated over the same time

period, but using 2 and 10mm as a threshold.
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forecasts from RADSAT are better than those from the

CTRL and RAD.

In spite of those encouraging results, some unwanted arti-

facts are also observed with the assimilation of CWP and LPW

observations such as the development of spurious storm cells in

the domain during the forecast. Another problem is the neg-

ative impact of the high layer precipitable water observations.

More research is warranted to better determine whether such

drawbacks can be addressed through either a quality control

process for LPW product or improved background error co-

variances. More systematic experiments will be performed to

investigate if these GOES satellite products have potential for

better convective-scale analyses and forecasts in future real-

time operations.
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